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Abstract 

A comparison of the covering properties of windows m, m + 1, where the window side 
l is l = 2", yields an expression for the fractal dimension D which displays directly 

m m n l  

effects due to periodicity and inhomogeneities. The structure of the D versus m curve gives 
n l  

insight into the nature of the representation of the fractal. In some cases bounds forD may 
be obtained and, if appropriate, the effect of the inhomogeneities due to boundaries, initial 
conditions, the pixel limit or periodicity can be removed. 

1. Introduction 

1.1. FRACTALS 

Fractal dimension has been used to characterize properties of many objects of 
chemical and physical interest [1]: for example, the adsorption surface of catalysts can 
be assessed in terms of a fractal dimension; even the catalyst "reactivity" can be 
characterized with a fractal dimension [2]. In addition, a large number of physical 
processes (diffusion-limited aggregation [3] and invasion percolation [4,5] are but two 
examples) have a critical point c at which the object, for example the site density A(L) 
descriptive of the process, takes on fractal properties. "Breakthrough" of a percolation 
process on a lattice is an example of such a critical point, and the critical parameter is 
Pc' the percolation threshold. In such cases, a density PA' defined as the fraction of lattice 
sites occupied by the percolating fluid, scales with lattice size L according to a power 
law: 

c _ L D - d ,  (1) 
PA 

where D is the fractal dimension (a "critical exponent") and d is the geometric or lattice 
dimension. 

*To whom correspondence may be addressed. 
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The evaluation of the fractal dimension of  a physical object, e.g. a catalyst 
surface, or of  a physical process at a critical point can be obtained via eq. (1) using the 
density PA(L) measured for several different window sizes L. However, in many cases 
the "density" measurements are indirect and models of  the objects or simulations of  the 
process can provide additional insight. This is particularly the case when some under- 
Standing of the effect of  boundaries, inhomogeneities, periodicity, etc. is potentially 
important. 

Although some fractal objects can be analyzed by an algebraic model (cf. the 
Sierpinski Gasket [6(a)] or by the use of hyperscaling relations [7, 8], the only way in 
which to obtain a detailed characterization of many fractals is by analyzing their 
lattice representation generated by an appropriate computer algorithm. For 
example, Wilkinson and Willemsen [5(b)] extracted values of critical exponents such 
as D from eq. (1) by plotting the value of PA(L) (averaged over many representations) 
versus the size L of the grid and equated the slope to D - d (cf. fig. 1). 

_5 

Ln (I) 

Fig. 1. Fractal dimension. From the number of objects of size 
/ by / needed to cover the pattern versus the length/. 

Generally one can, with the use of  lattices, investigate directly a variety of effects 
simply by generating a representation of  the fractal with the characteristics one 
wishes to study, be they boundaries, inhomogeneities, periodicity, etc. We shall 
in fact show that an analysis of the covering properties of  windows with s i d e / ,  where 
I m = 2", m, m + 1, yields an expression for a fractal dimension D which displays 
directly effects due to periodicity and inhomogeneities. The structure of  the D m versus 
m curve then gives insight into the nature of  the representation of the fractal. In some 
cases, bounds for D may be obtained and, if appropriate, the effect of the inhomogenei- 
ties due to boundaries, initial conditions, the pixel limit or periodicity can be removed. 

1.2. MEASUREMENT OF D WITH ADJACENT WINDOWS 1 AND I m + 1 

If one is near a critical point, the use of  eq. (1) to extract D from a lattice 
C 

representation requires a large number of realizations to reduce the scatter in PA tO 
acceptable levels and requires a range of L values. Altematively, one may measure the 
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number of  times N(lm) a window of size / must be laid down to cover all of a single 
lattice representation Ac(L ). The fractal dimension D is then the slope of: 

I n ( N ( / ) )  = - D  ln(/m) + C. (2) 

This value of  D, obtained in the limit as / goes to zero, has been denoted the "capacity 
dimension" D to distinguish it from the Hausdorff dimension [8]. Although, in 
principle, one needs only one grid size L, it must be large enough to permit a range of  
window sizes I m, and in the best of circumstances yields a curve such as that depicted 
in fig. 1. Unfortunately, a plot of  N ( l )  using eq. (2) may not be the best tool for 
evaluating D. This is because eq. (2) is really a device for obtaining D by comparing 
N(Im) to that of  N(l = 1), i.e. for a window of size unity. To see this, note for / = 1, 
C = ln(N(l = 1)), so that eq. (2) can be written as 

In (N( Im) /N( l  = 1)) 
D = (3) 

In (1 ~Ira ) 

A more useful approach is to calculate D by comparing N for adjacent window 
sizes l and l as in 

rn  m + l  

In (N(l m )/N(lr~+ ~ )) 
Dm= (4) 

In (Ira + 1 ~Ira ) 

A plot of D versus m converts the curve of fig. 1 with its attractive "straight line" region 
into that of  fig. 2. The more or less horizontal portion of this curve preserves the 
"straight line" portion of  fig. 1, and a measure of D could be obtained by, say, averaging 

E 
£3 

i i  

A 

m 
Window Label max 

Fig. 2. Fractal dimension. Using eq. (4) with windows m, m + 1. 

D over this region. However, one can, in fact, use the structure of  this curve to advantage 
to obtain more insight into the fractal character of the object of  interest. 
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1.3. CHARACTERISTICS OF REPRESENTATIONS ON A LATITCE 

Physically defined fractal objects clearly have a lower limit, e.g. the atomic scale. 
Representations of fractal objects usually have lower limits where the dimension of a 
representation changes. In the case of a representation on a lattice, this will be referred 
to as the pixel limit [10] and is in fact usually the grid spacing. Fractals may also exhibit 
an upper limit which, in the case of lattice objects, is usually just the lattice extent [10], 
but if there is a "cut-off', this length may be less than the lattice extent L [6(b)]. In 
addition to these limiting factors, one can also consider the effect of  boundary condi- 
tions on the object At(L). An initial condition such as the arbitrary occupation of all 
lattice sites along part of  the perimeter of  the lattice (e.g. the source region of a 
percolation process) may create aberrations so that the fractal dimension appears to be 
different to that generated by the algorithm in the interior of the lattice. Similarly, the 
termination of the process may yield local inhomogeneities (e.g. near a sink). These 
situations may be influenced further by the conditions defining the boundaries, for 
example, closed boundaries may generate inhomogeneities, whereas the use of 
"periodic" boundaries normally reduced them. These features of a representation of a 
fractal on a lattice may all be viewed as the limitations on a presumed homogeneity, at 
all scales, of  the representation. The problem then is one of inhomogeneities generated, 
on the lattice, by the restrictions on the algorithm. 

2. Analysis 

2.1. INHERENT INHOMOGENEITIES 

In order to analyze in more detail the effect of inhomogeneities on a finite 
representation, consider the schematic of fig. 3(a), where a fractal object of  dimension 
D = 1.90 spans an L by L grid. We now imagine that there is a large inhomogeneity A 
of dimension D m = 0.10. Table 1 gives the number of windows N ( l )  of size l = ( 2 )  m 

required to cover the occupied portions of the lattice. Using eq. (4), the dimension D 
m 

given in the third column can be obtained. Since the intrusion has a dimension less than 
that of the object, its effect is to decrease the value of D when windows of size 

rtl  

comparable to the inhomogeneity are employed in eq. (4). Consequently, there is a 
minimum in D near m = 8, i.e. at l = 256. Conversely, if the inhomogeneities were to 

m 

have a larger value of D than the surrounding object, then for window sizes equal or less 
than that of  the inhomoegenity, the measured value of D will simply be that of  the 
inhomogeneity. This is the case for the limiting boundary m = 9 or at l = 512, where 
D =2 .0  

m 

To illustrate the effect of inhomogeneities comparable in size to the pixel, 
consider the situation illustrated by fig. 3(b), where the object has dimension D = 2.00 
and the intrusions are of dimension zero and span a tree-like structure with branches of 
width 1, stem of width 2 and base of width 6. Table 1 again gives the N(lm) required 
and the D m calculated using eq. (4). The inhomogeneity is now of lower dimension than 
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Fig. 3. (a) Effects of large-scale inhomogeneities. (b) Effects of pixel-scale inhomogeneities. 

Table 1 

Effects of inhomogeneities 

(a) Large scale (b) Small (pixel) scale 

/ = 2" m N ( / )  D / = 2" m N ( / )  D 

512 9 0.98 128 7 1 

256 8 3.93 } 2.00 64 6 4 }2  

128 7 12.12 } 1.62 32 5 16 }2 

64 6 36.17 }1.71 16 4 64 }2 

32 5 118.30 }1"84 8 3 256 }2 

16 4 413.14 }1.845 4 2 1023 }1.998 

8 3 1493.1 }1.878 2 1 4040 }1.981 

4 2 5486.4 } 1.889 1 0 15728 }1.961 

2 1 20321 } 1.950 

1 0 75559 } 1.897 

the object and lowers the calculated dimension when windows of size comparable to the 
inhomogeneity are used in eq. (4). Thus, for m about 4 or smaller, i.e. for l < 16, the 
value of D is pulled below its correct value. 

m 

2.2. THE PIXEL LIMIT 

The foregoing illustrations certainly show how an inhomogeneity in a fractal 
object can affect the measured value of D. Such inhomogeneities must be viewed as 
being created by restrictions on the algorithm generating the fractal object. The pixel 
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limit is, however, more complex and must be considered as an inadequacy of the lat~ce 
representation itself. 

The probability of an individual pixel being occupied is controlled by the value 
assigned to p for that stage of the process (for example, at the critical point p = pc). 
Further, the number of distinct arrangements of, say, 1, 2, 3 or 4 occupied pixels within 
a given window depends on the window size (for example, one occupied pixel can be 
placed in four distinct ways in a 2 × 2 window or sixteen ways in a 4 × 4 window). As 
a result, the value of N ( / )  depends on both I and p. For small windows, the constraints 
on N ( I )  are severe and near the pixel limit, the algorithm used to create a percolation 
invasion pattem is incapable of maintaining the same density of occupied sites as for 
larger windows. The point is illustrated for a 2 x 2 window by the the data presented 
in table 2. There, we presume that the probability of occupation is 0.6 (i.e. site 

Table 2 

Pixel limit 

Event Probability 

I I  04  

0.6 

Probability Combinations Product 

(0.4)3 

(0.4) 2 (0.6) 

3 (0.4) (0.6) 

1 0.0064 

3 0.576 

3 1.296 

(0.6)3 1 0.864 

Total 2,7424 

percolation threshold of a large grid) and define a "hit" for lhe 2 x 2 window whenever 
at least one of the 1 x 1 pixels is occupied. We find that statistically the number of hits 
or number of times the 2 x 2 square must be covered is 2.7424. Using eq. (4), comparing 
the 2 x 2 to the 1 x 1 window gives as upper bound [11] 

In (2.7424/1)  
D,,, = -- 1.46. 

in (2/1)  
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Close to the pixel limit, this way of creating the percolation pattem mimics the 
effect of low density pixel scale inhomogeneity; the algorithm appears to "create" 
inhomogeneities near the pixel limit. 

2.3. INDUCED INHOMOGENEITIES 

Similarly, a percolation invasion algorithm (see the appendix for an example), in 
concert with the boundary conditions, can create inhomogeneities at large scale. For 
example, the requirement that the source line be fuUy occupied and that the process 
terminate with occupancy of a pixel on the opposite boundary, i.e. the sink line, creates 
on average the pattern depicted in fig. 4 (cf. ref. [11]). Clearly, this has large scale 
structure, and for windows of size L and L/2, it appears to have dimension two. (Note, 
however, that if the pattern of interest is not bounded by the perimeter of the grid but 
is located in one "corner", with the result that the grid is largely empty, the value of D 
measured with large windows need not be two - it could be much less than one!) 

I_ 

21 

Fig. 4. Schematic of percolation invasion at breakthrough. 

In addition, the asymmetry of the source and sink boundary conditions results in 
large scale lower dimension inhomogeneities near the sink (cf. the large "empty" 
regions extending back from the sink line in fig. 4). As a result, these inhomogeneities 
reduce the fractal dimension obtained with windows of size L/4, L/8, etc. The algorithm 
appears to create inhomogeneities! 

2.4. APPARENT INHOMOGENEITIES 

Apparent inhomogeneities are due to deficiencies in the measuring device rather 
than to inherent deficiencies in the procedure for representing the fractal object or the 
restrictions of a finite lattice. Perhaps the best example of this is the evaluation of the 
fractal dimension of a Cantor dust [7]. 
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Table 3 

Effect of periodicity 

(a) Cantor dust gasket (square) (b) Sierpinski 

For / = L / 3 "  For / = L / 2  "~ For 1,, = L/3  m 

m N(1) D m rn N ( l )  D m rn N(1) D m 

For / = L / 2  m 

rn N ( l )  D m 

0 1 0 1 0 1 
1 2 }0.63 } 1 }1.893 

1 1 1 8 } 1.893 
2 4 }0.63 } 2  

2 4 2 64 } 1.893 
3 8 10'63 /0"585 

3 6 3 512 }1.893 
4 16 }0.63 } 0.737 

4 10 4 4096 
5 32 } 0.63 } 0.678 5 16 5 32768 }1.893 
6 64 } 0.63 } 0.807 

6 28 } 0.5849 
7 42 

45 6"308X10S } 0.785 
46 1.087×109 
47 1.638X109 } 0.591 

0 1 
1 4 }2  

2 16 }2  
3 60 } 1.907 

1.976 
4 236 } 1.872 

5 864 } 1.947 
6 3328 

It is well known that if one uses windows (in the Cantor dust, these are simply 
rulers) which have a periodicity L, L/3, L/9, etc., i.e. a periodicity the same as that of  
the underlying fractal object, then for all window sizes down to the pixel limit one 
obtains D = 0.63 (cf. table 3(a)). However, use of rulers of  size L, L/2, L/4, etc. does 
not yield a D of 0.63. Rather, the oscillating set of values of D given in the second 
column of table 3(a) is obtained; these oscillations are not damped! Thus, the use of 
rulers with a periodicity different to that of  the fractal object appears to generate 
inhomogeneities at all scales. An analogue in two dimensions is afforded by the 
Seirpinski gasket using square windows of size L, L2, L/4, etc., rather than the more 
commonly employed L, L/3, L/9, etc. (cf. table 3(b)). 

3. Illustration 

The representation of the percolation invasion process on a two-dimensional grid 
will serve to illustrate the application of the issues raised in the preceding section. The 
fact that the calculated dimension D varies with window size is not necessarily a 
disadvantage for, as pointed out for fig. 2, the resulting structure can provide bounds for 
D and it can also provide a measure of the scale of the inhomogeneities. This will 
certainly be the case when the small scale (pixel 1Pnit) and large scale inhomogeneities 
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have a lower dimension than that of  the fractal object of  interest and there exists only 
one maximum within this region. 

3.1. BOUNDED VALUES OF D 

TO i l lu s t r a t e  th is  po in t ,  the  v a l u e s  o f  D m for  the  d i s c o n t i n u o u s  d e f e n d e r  o f  an  

i n v a s i o n  p e r c o l a t i o n  p a t t e r n  at  b r e a k t h r o u g h  on  a t w o - d i m e n s i o n a l  squa re  l a t t i ce  a re  

g i v e n  in  t ab l e  4(b) ;  s ee  the  a p p e n d i x  fo r  de ta i l s  o f  the  p roc e du re .  T h e  cu rves  f o r  D are  

s h o w n  in  f ig.  5 fo r  g r id  s izes  1024 x 5 1 2 .  F r o m  this  f igure ,  i t  is  c l ea r  tha t  t he  l o w e r  

Table 4 

Percolation invasion data for a 1024 x 512 grid 

(a) Number of hits (averaged over 300 realizations) 

Window label* m in / = (2)" 1 2 

Continuous invader N ( / )  62517 18618 
Discontinuous defender N ( / )  83566 23440 

3 4 5 6 7 8 9 

5214.3 1435.1 393.48 108.01 29.46 7.80 1.96 
6028.3 1567.0 413.11 110.87 30.07 7.98 2.00 

(b) Computed dimension D 

Window label* m in eq. (4) 1 

Continuous invader D (CI) 1.746 
Discontinuous defender D (DD) 1.828 

2 3 4 5 6 7 8 

1.832 1.858 1.863 1.860 1.871 1.918 1.995 
1.953 1.937 1.916 1 .891 1.878 1.912 1.995 

*For the 1024 x 512 grid, the largest / x / window is 512 x 512, and since l,, = 29 = 512, the largest 
window label is m = 9 for this grid; the smallest window reported here is 2 x 2 (m = 1), which is one step 
up from the pixel window of 1 x 1. 

*For example, the entry 1.918 (at m = 7 for D (CI) for the 1025 x 512 grid is obtained from the data of table 
4(a) using eq. (4) as: D = ln(29.46/7.80)/ln(28/27) = 1.329/0.693 = 1.918. 

E 
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i D(DD) 
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Fig. 5. Fractal dimension versus window label m. 
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bound of D of the discontinuous defender (denoted D(DD)) is approximately 1.95, 
whereas the correct value is D (DD) = 2.00, i.e. the discontinuous defender should have 
the same dimension as the grid. A similar analysis of the continuous invader (CI) yields 
a lower bound of D(CI) of 1.86. The expected value of D(CI) for invasion percolation 
when the defending phase is infinitely compressible is 1.896 [5(c),7,13] and our lower 
bound, from fig. 5, implies that D(CI) is at least 1.86. 

It is worthwhile noting that the simple average of the D ( D D )  values given in 
table 4(b) gives unsatisfactory results even if one attempts to remove the effect of  the 
limiting windows. For example, if the smallest and the two largest windows are ignored 
and the Dm(DD) of table 4(b) are averaged over the remaining windows (m = 2 to 6), 
one obtains values Dav(DD) = 1.91. Thus, Dav(DD ) is a less satisfactory result than is 
obtained by extracting the local maximum. An alternative, and often followed 
procedure, is to take the number of "hits" N(lm) for the discontinuous defender given 
in table 4(a), plot them according to eq. (2) and find the best slope (cf. fig. 1). For the 
range m = 2 to m = 7, this gives Dfit(DD ) = 1.92. Thus, the fitting procedure using 
eq. (2) also yields a less reliable result than is given by the lower bound. 

The same points can be made with regard to D ( C I )  values obtained by averaging 
Dm(CI) values or by fitting N(lm) versus 1 m. The average D ( C I ) ,  obtained from 
table 4(b) by averaging the Dm(CI ) from m = 2 to m = 6, is Dav(CI) = 1.86. This average 
can be "improved" by including the two largest windows, i.e. averaging over m = 2 to 
m = 8 to yield Dav(CI) = 1.893. Although this is very close to correct, the improvement 
is certainly spurious in that the largest windows are clearly influenced by the boundary 
(cf. their D values of 1.99 and 1.92). The alternative procedure of fitting the N ( I )  
given in table 4(a) to eq. (2) gives, for the range m = 2 to 7, Dfit(CI) = 1.86. These values 
are also often "improved" by including the largest windows, but this must be viewed 
with suspicion because of the effect of  the boundary on the larger windows. Although 
the case is perhaps not as clear as for D(DD), it is again evident that either averaging 
D ( C I )  or fitting N ( / )  can give less reliable values of the fractal dimension than the 
selection of the local maximum in Dm(CI). A knowledge of the inherent structure of the 
data in table 4 is clearly advantageous! 

3.2. EVALUATING THE SCALE OF INHOMOGENEITIES 

In the analysis of  the preceding paragraphs, the large scale inhomogeneities 
clearly affect the value of D ;  indeed, the window size m = 6 at which the minimum 
occurs in fig. 5 indicates that the inhomogeneity spans windows at least as large as 
2 6 = 64, SO that inhomogeneities are of order 26/28 = 25% of the entire representation. 
These large scale inhomogeneities are, of  course, a residue of the very asymmetric 
initial condition of almost 100% defender and only a single source line of invader. On 
the other hand, the maximum for D in fig. 5 between m = 2 and m = 3 indicates that 

m 

the small scale inhomogeneity spans windows less than about 23 = 8, so that the 
inhomogeneity is only 23/28= 3% of the entire representation. 
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3.3. PERIODICITY 

The only periodicity implied by fig. 5 is that of the limits imposed by the grid 
extent L = 1028 versus the pixel limit L = 1. This is, of  course, different to the case of 
the Sierpinski gasket or the Cantor dust discussed previously in section 2.4, where there 
was an underlying periodicity which was less than that of  the grid extent. 

3.4. THE INHOMOGENEITY-FREE LIMIT 

It is relatively easy to remove the effect of the large scale inhomogeneities by 
considering only smaller windows. However, as can be seen from fig. 5, the local 
maximum of D ,  for the discontinuous defender, never reaches its limiting theoretical 
value of D(DD) = 2. This is because the pixel limit encroaches on the windows before 
they can become small enough to overcome the larger scale inhomogeneities. A larger 
grid, say 2048 x 1024, would provide a greater number of the inhomogeneity-free 
windows and hence an improved lower bound. An even larger grid would do better, but 
this is costly if the algorithm generating the fractal is complex. Further, in the case of 
a physical system, there may be limitations on the measureing device imposed by the 
extent of  the system. 

An alternative is to remove the effect of the pixel, thus allowing D to approach 
its proper limit. This is essentially the philosophy of Rapaport, who recognized the 
possibility of systematic deviations from the asymptotic limit in self-avoiding 
walks [ 14] and, of  course, many earlier workers had attempted a power series treatment 
of their data with varying degrees of theoretical motivation (cf. Sykes et al. [15]), 
McKenzie [16], Middlemiss [17]). One expects the expression for D to be a function 
of the window size l associated with each D . Since l = 2 m, one could attempt to fit 

m m m 

D as: 
m 

Dm= ~, ai (2 m)bi. 
i 

Because of the availability of a high quality statistics routine for fitting a sum of 
exponentials [18], we have chosen to write 

O m = ~ a i  eflmi 
i 

(conversion to a power series in 2 m is effected by the relation b = 1.44fl). On carrying 
out the procedure, one finds that indeed the fitting function contains a term which is 
small everywhere except for ra = 1, i.e. it is the "pixel effect". Fig. 6 displays the curve 
of D versus rn for the 1024 × 512 grid for both the complete fitting function as well 

m 
as the same function minus the pixel effect. The limit, as m =~ 1, of  the corrected curve 
approaches 1.98 for D ( D D ) ,  i.e. it is close to the expected value of 2. For the 
continuous invader, the corrected curve yields a value of D ( C I )  = 1.89 as m ~ 1, again 
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Fig. 6. Correction for pixel effect. 

close to the expected value of 1.896. The correspondence of the corrected limiting 
values of D ( C I )  and D ( D D )  to their expected values suggests that this procedure is 
preferred over either the simple fitting technique for N(lm) or the averaging procedure 
for D . 

m 

We should remark, before leaving this illustration, that the slow convergence of 
D ( C I )  and D ( D D )  to their correct values is a consequence of inhomogeneities 
discussed earlier. 

4. Concluding remarks  

An analysis of the covering properties of adjacent windows with size Ira, where 
l m = 2", m, m + 1, yields an expression for the fractal dimension D which displays 

Ftl 

directly effects due to periodicity, boundaries and inhomogeneities. The structure of the 
D versus m curve gives insight into the nature of the representation of the fractal. The 
size of inhomogeneities can be extracted, as can the periodicity of the underlying 
structure. 

The use of the percolation invasion process at breakthrough provides an elegant 
example of the role of inhomogeneities. The variation of D versus m, illustrated in 
fig. 2, for a percolation invasion algorithm can be explained in terms of the inhomoge- 
neities shown in figs. 3 and 4. For the largest windows, i.e. L × L, the fractal dimension 
D appears to be two (cf. point C in fig. 1); this is due to the macroscopic structure 
imposed by the source and sink boundary conditions. However, for a somewhat smaller 
window, D is less than two (cf. point A in fig. 2). This is due to the intrusion (the empty 
region extending back from the sink, cf. fig. 4) occasioned by the point character of the 
sink boundary condition which defines the breakthrough condition. Only as the 
windows become much smaller than these inhomogeneities can the proper value of D 
assert itself. Eventually, as pixel limit is approached, the value of D drops (cf. point 
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B in fig. 2); this is due to the inability of the algorithm to generate the correct density 
of occupied pixels. 

It is clear that simply fitting D in eq. (2) or averaging over a set of  D 
m 

from eq. (4) can yield erroneous values of the fractal dimension [19]. However, an 
understanding of the dependence of measured values of this dimension on lattice limits, 
inbomogeneities and periodicity can guide one in extracting the best bounds for D. In 
some cases, bounds for D may be obtained and, if desired, the effect of  the periodicity, 
of  boundaries and of initial conditions can be removed to yield an idealized value of D. 

Appendix 
Percolation invasion method 

The term percolation invasion can refer to a number of processes which ensure 
that a fluid transport process is represented realistically. Variations of the percolation 
invasion algorithm depend on details of the step defining breakthrough [20], on whether 
the trapped fluid is incompressible [21] or infinitely compressible [22], and whether 
only the single smallest connected site is invaded or whether all connected sites within 
a size range are invaded [23]• In order to ensure clarity, we outline here, for two 
dimensions, the algorithm used for the invasion percolation process discussed in the 
main body of the manuscript. 

We consider a square grid of with L and length 2L with sites (the grid inter- 
sections) labelled L.., where 1 < i < L, 1 < j  ___ 2L. The source of the invader fluid is the 

• . t J  

hne of s~tes L. 1 (1 < i < L) and the sink is the line of sites L/zr (1 < i < L). For a periodic 
boundary, the e~Jges L . and L,. are neighbours (i e as on a'cylinder) Sites on the grid 
are assigned sizes (0 < r < 1) se~[ected at random from a uniform distribution. The initial 
state has all sites of the source line occupied by the invading phase and all remaining 
sites occupied by a defending phase, which is taken to be infinitely compressible• Since 
the invading phase is taken to be wetting relative to a nonwetting defender phase, the 
invasion process is "imbibition" and is taken to be controlled by the size of the sites• 

In the algorithm of the invasion process, we seek the smallest size of defender- 
occupied site which is contiguous to the invader front (i.e. initially one would test all 
sites L/, z (1 < i < L) and seek the smallest). Once this single smallest site is identified, 
it is occupied by the invader. This step creates additional sites contiguous to the invader, 
and the new set of  all sites contiguous to the invader is again examined for the smallest 
size and when it is found, this single site is invaded; the process is repeated. 

In this process, only one site at a time is invaded, each with its own capillary 
pressure. From a physical point of view, one could imagine carefully controlling the 
available volume of the invader such that only one site at a time could be penetrated. 
It should be clear that since sites penetrated are always contiguous to the invader, the 
algorithm ensures a logical method of transport of material to the site in question. This 
feature distinguishes between simple percolation and percolation invasion. Further, the 
use of an infinitely compressible defender fluid removes any need to ensure that the site 
being penetrated is connected to the sink. 
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The process terminates when a single site on the sink line is penetrated by the 
i nvade r -  this is "breakthrough". 

The result is a two-dimensional pattern of sites occupied by the invader which 
are, as a consequence of the invasion process, connected to the source - we denote these 
sites as the continuous invader (CI). The pattern also indicates a number of sites still 
occupied by the defender but which are totally surrounded (disconnected) by invader- 
occupied sites - these are denoted as discontinuous defender (DD). Because of the 
particular termination step chosen, there may be other sites occupied by the defender 
which are still connected (continuous) to the sink line - they are denoted as continuous 
defender (CD). 

The determination of the fractal dimension requires the evaluation of the number 
of sites N occupied by a given type of fluid: N(DD), N(CI) and N(CD) denoting, 
respectively, discontinuous defender, continuous invader and continuous defender. The 
sum N(DD) + N(CI) + N(CD) = N(l), where N(l) is the number of sites examined in 
a window of dimension I x I with l < L. We confine our examination to square windows 

2 m I m = and when windows of size I < L are considered, we select them in a regular 
fashion beginning at one comer of the grid. Each/m × Irn window is laid down and, if 
it contains a site occupied by the type of fluid in question, then a "hit" is registered for 
that window for that fluid and the sum of hits is recorded as N ( / ) .  The number of hits 
for each window size averaged over 300 realizations is given in table 4(a). It is generally 
agreed that the process just described is equivalent in its static properties to ordinary 
percolation at breakthrough [ 24]. Consequently, the continuous invader should have the 
fractal dimension D(CI) = 1.896 or the generally accepted, but unproved, rational value 
of 91/48 [13]. 
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